

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Overview

Modular Feature Engineering

Define features as independent blocks to organize your projects.

[image: _images/modularity_diagram.png]

Source Code Tracking

Track source code of every feature and experiment to make each of them reproducible.

[image: _images/feature_constructor.png]

Parallel Computing and Caching

Compute independent features in parallel. Cache them to avoid repeated computations.

[image: _images/feature_computing.png]

Experiment Tracking

Track your progress with local leaderboards.

[image: _images/leaderboard.png]

Feature Selection

Compute feature importances and select features from any experiment with experiment.feature_importances() and experiment.select().

[image: _images/feature_importances.png]

Easy Stacking

Design stacked ensembles of any complexity with stl.stack().

Safe Validation

Compute stateful features, such as target encoding, after CV split to avoid target leakage.

End-to-end Experiment Inference

Automatically compute all your features and run models just with experiment.predict(test_frame).

Interactivity and Rich Reports

Monitor the progress of everything going on in KTS with our interactive reports. From model fitting to computing feature importances.

[image: _images/fitting.png]

Clean API

Features are defined as decorated functions. Then they are collected into features sets. Features may save state between training and inference stages. They can also be nested, i.e. use other features inside. In case of possible target leakage, stateful feature can be computed after CV split.

@feature
def simple_feature(df):
 res = stl.empty_like(df)
 res['c'] = df['a'] - df['b']
 res['d'] = df['a'] * df['b']
 return res

from somelib import Encoder

@feature
def stateful_feature(df):
 res = simple_feature(df)
 if df.train:
 enc = Encoder()
 res = enc.fit_transform(...)
 df.state['enc'] = enc
 else:
 enc = df.state['enc']
 res = enc.transform(...)
 ...
 return res

fs = FeatureSet(before_split=[simple_feature],
 after_split=[stateful_feature],
 train_frame=train,
 targets='Survived')

{% page-ref page=”walkthrough/feature-engineering/” %}

KTS provides wrappers for most frequently used models for regression and binary and multiclass classification tasks. Other models can also be easily wrapped.

from kts.models import binary

model = binary.CatBoostClassifier(rsm=0.2)

{% page-ref page=”walkthrough/modelling/” %}

Validation strategies are defined by splitter and metric. In more advanced cases you can subclass Validator and define your own validation strategy using auxiliary data (e.g. time series or groups for either splitting or evaluation).

from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold

skf = StratifiedKFold(5, True, 42)
val = Validator(skf, roc_auc_score)

summary = val.score(model, fs)
exp_id = summary['id']

{% page-ref page=”walkthrough/validation/” %}

Stacking is easy with stl.stack that behaves as an ordinary feature and can be simply added to any feature set. To avoid target leakage, use noise or special splitters.

val_splitter = ...
val_stack = Validator(val_splitter, roc_auc_score)

model_stack = binary.LogisticRegression(C=10)
fs_stack = FeatureSet([..., stl.stack(exp_id)], ...)

summary_stack = val_stack.score(model_stack, fs_stack)
stack_id = summary_stack['id']

{% page-ref page=”walkthrough/stacking.md” %}

Any experiment, even stacked, automatically computes all its features and runs all models. All you need is experiment.predict(test_frame).

model = leaderboard[exp_id]
model_stack = leaderboard[stack_id]

model.predict(test_frame)
model_stack.predict(test_frame)

Get started

Start exploring KTS with our tutorials:

{% page-ref page=”tutorials.md” %}

Table of contents

	Overview

	Installation

	Tutorials

walkthrough

	Feature Engineering

	Simple Features

	Stateful Features

	Standard Library

	Generic Features

	Feature Sets

	Modelling

	Custom Models

	Validation

	Custom Validators

	Stacking

	Feature Selection

	Hyperparameter Optimization

	CLI

	Configuring KTS

Installation

Tutorials

Getting Started

Installation

Overview

Tutorials

CLI

Configuring KTS

Feature Selection

Hyperparameter Optimization

Stacking

Feature Engineering

Feature Sets

Generic Features

Simple Features

Standard Library

Stateful Features

Modelling

Custom Models

from nonamelib import NoNameClassifier

class KTSNNClassifier(kts.CustomModel, NoNameClassifier):
 def get_tracked_params(self):
 return ['learning_rate', 'parameter_name', 'etc']

nnc = KTSNNClassifier(parameter_name=42)
val.score(nnc, fs_1)

from nonamelib import NoNameClassifier

class KTSNNClassifier(kts.CustomModel, NoNameClassifier):
 def get_tracked_params(self):
 return ['learning_rate', 'parameter_name', 'etc']

 def preprocess(self, X, y):
 new_X = <normalize_and_fillna>(X)
 return new_X, y

Validation

Custom Validators

class TimeSeriesValidator(Validator):
 def create_folds(self, feature_set, splitter):
 date = feature_set.aux['date'].sort_values().index.values
 for idx_train, idx_test in splitter.split(date):
 yield date[idx_train], date[idx_test]

class GroupValidator(Validator):
 def create_folds(self, feature_set, splitter):
 y = feature_set.target
 group = feature_set.aux['group'].values
 for idx_train, idx_test in splitter.split(X=y, y=y, group=group):
 yield idx_train, idx_test

class GroupMetricValidator(Validator):
 def evaluate(self, y_true, y_pred, feature_set_fold):
 group = feature_set_fold.aux['group'].values
 return self.metric(y_true, y_pred, group=group)

 _static/ajax-loader.gif

_images/leaderboard.png
id
BETBJF
HWUFSM
FQZRFI

LEBEDZ

score

0.852

0.85

0.848

0.841

LEADERBOARD

model

CatBoostClassifier
CatBoostClassifier
CatBoostClassifier

LogisticRegression

features

12

12

12

12

date

20m 29s ago
21m 40s ago
19m 3s ago

19m 18s ago

took
9s

24s

8s

5s

_images/modularity_diagram.png
Input Frame

Feature 1 Feature 2 Feature 3

Feature Set 1 Feature Set 2

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/feature_constructor.png
GENERIC FEATURE
name

tfidf

source

@feature
@generic(col="'Name')
def tfidf(df):
if df.train:
enc = TfidfVectorizer(analyzer='char', ngram_range=(1, 3), max_features=5)
res = enc.fit_transform(df[col])
df.state['enc'] = enc
else:
enc df.state['enc']
res enc.transform(df[col])
return res.todense()

requirements

sklearn==0.20.2

_images/feature_importances.png
feature

is_male
Pclass_mul_Age
Pclass_sub_Age
Fare_div_mean
Fare_sub_div_mean
tfidf_Name_4
tfidf_Name_2

mean
37.519
8.839
6.410
6.262
5.858
4.894
4.600

FEATURE IMPORTANCES

importance

!l”"|

_images/feature_computing.png
feature

feat1

feat2

feat3

COMPUTING FEATURES
progress

[20:44:45.769] all these features
[20:44:45.770] are computed simultaneously

L J 3m 22s

[20:44:45.824] use progressbars inside features
[20:44:45.826] to track their progress

[20:44:45.841] you can also print logs
[20:44:45.842] and they'll appear here

13m 21s

_images/fitting.png
FITTING
progress train valid metric took eta

T

0.369 0.564 0.809 4s
0.365 0.517 0.786 3s
0.400 0.393 0.904 3s
0.400 0.383 2s 1s

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

