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Overview


Modular Feature Engineering

Define features as independent blocks to organize your projects.

[image: _images/modularity_diagram.png]




Source Code Tracking

Track source code of every feature and experiment to make each of them reproducible.

[image: _images/feature_constructor.png]




Parallel Computing and Caching

Compute independent features in parallel. Cache them to avoid repeated computations.

[image: _images/feature_computing.png]




Experiment Tracking

Track your progress with local leaderboards.

[image: _images/leaderboard.png]




Feature Selection

Compute feature importances and select features from any experiment with experiment.feature_importances() and experiment.select().

[image: _images/feature_importances.png]




Easy Stacking

Design stacked ensembles of any complexity with stl.stack().




Safe Validation

Compute stateful features, such as target encoding, after CV split to avoid target leakage.




End-to-end Experiment Inference

Automatically compute all your features and run models just with experiment.predict(test_frame).




Interactivity and Rich Reports

Monitor the progress of everything going on in KTS with our interactive reports. From model fitting to computing feature importances.

[image: _images/fitting.png]




Clean API

Features are defined as decorated functions. Then they are collected into features sets. Features may save state between training and inference stages. They can also be nested, i.e. use other features inside. In case of possible target leakage, stateful feature can be computed after CV split.

@feature
def simple_feature(df):
    res = stl.empty_like(df)
    res['c'] = df['a'] - df['b']
    res['d'] = df['a'] * df['b']
    return res
   
from somelib import Encoder

@feature
def stateful_feature(df):
    res = simple_feature(df)
    if df.train:
        enc = Encoder()
        res = enc.fit_transform(...)
        df.state['enc'] = enc
    else:
        enc = df.state['enc']
        res = enc.transform(...)
    ...
    return res 
    
fs = FeatureSet(before_split=[simple_feature], 
                after_split=[stateful_feature],
                train_frame=train,
                targets='Survived')





{% page-ref page=”walkthrough/feature-engineering/” %}

KTS provides wrappers for most frequently used models for regression and binary and multiclass classification tasks. Other models can also be easily wrapped.

from kts.models import binary

model = binary.CatBoostClassifier(rsm=0.2)





{% page-ref page=”walkthrough/modelling/” %}

Validation strategies are defined by splitter and metric. In more advanced cases you can subclass Validator and define your own validation strategy using auxiliary data (e.g. time series or groups for either splitting or evaluation).

from sklearn.metrics import roc_auc_score
from sklearn.model_selection import StratifiedKFold

skf = StratifiedKFold(5, True, 42)
val = Validator(skf, roc_auc_score)

summary = val.score(model, fs)
exp_id = summary['id']





{% page-ref page=”walkthrough/validation/” %}

Stacking is easy with stl.stack that behaves as an ordinary feature and can be simply added to any feature set. To avoid target leakage, use noise or special splitters.

val_splitter = ...
val_stack = Validator(val_splitter, roc_auc_score)

model_stack = binary.LogisticRegression(C=10)
fs_stack = FeatureSet([..., stl.stack(exp_id)], ...)

summary_stack = val_stack.score(model_stack, fs_stack)
stack_id = summary_stack['id']





{% page-ref page=”walkthrough/stacking.md” %}

Any experiment, even stacked, automatically computes all its features and runs all models. All you need is experiment.predict(test_frame).

model = leaderboard[exp_id]
model_stack = leaderboard[stack_id]

model.predict(test_frame)
model_stack.predict(test_frame)








Get started

Start exploring KTS with our tutorials:

{% page-ref page=”tutorials.md” %}
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Custom Models

from nonamelib import NoNameClassifier

class KTSNNClassifier(kts.CustomModel, NoNameClassifier):
    def get_tracked_params(self):
        return ['learning_rate', 'parameter_name', 'etc']
        
nnc = KTSNNClassifier(parameter_name=42)
val.score(nnc, fs_1)





from nonamelib import NoNameClassifier

class KTSNNClassifier(kts.CustomModel, NoNameClassifier):
    def get_tracked_params(self):
        return ['learning_rate', 'parameter_name', 'etc']
        
    def preprocess(self, X, y):
        new_X = <normalize_and_fillna>(X)
        return new_X, y
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Custom Validators

class TimeSeriesValidator(Validator):
    def create_folds(self, feature_set, splitter):
        date = feature_set.aux['date'].sort_values().index.values
        for idx_train, idx_test in splitter.split(date):
            yield date[idx_train], date[idx_test]





class GroupValidator(Validator):
    def create_folds(self, feature_set, splitter):
        y = feature_set.target
        group = feature_set.aux['group'].values
        for idx_train, idx_test in splitter.split(X=y, y=y, group=group):
            yield idx_train, idx_test





class GroupMetricValidator(Validator):
    def evaluate(self, y_true, y_pred, feature_set_fold):
        group = feature_set_fold.aux['group'].values
        return self.metric(y_true, y_pred, group=group)
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